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Using methods of statistical physics, we study the average number and kernel size of general sparse random
matrices over Galois fields GF�q�, with a given connectivity profile, in the thermodynamical limit of large
matrices. We introduce a mapping of GF�q� matrices onto spin systems using the representation of the cyclic
group of order q as the qth complex roots of unity. This representation facilitates the derivation of the average
kernel size of random matrices using the replica approach, under the replica-symmetric ansatz, resulting in
saddle point equations for general connectivity distributions. Numerical solutions are then obtained for par-
ticular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and
average numbers of random matrices for any general connectivity profile. We present numerical results for
particular distributions.
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I. INTRODUCTION

Random matrices over Galois fields GF�q� are highly im-
portant in a number of application areas ranging from biol-
ogy to computer science and telecommunication. One of the
areas where they play a particularly important role is coding
theory �1�. In particular, linear codes are defined by the ker-
nel of a parity-check matrix, where each kernel vector is
termed a codeword and is associated with an original un-
coded message vector by a linear operation defined by a
generator matrix. Well-known examples include the Had-
amard codes, where properties of the kernel and rank play an
important role �2�, and low-density parity-check �LDPC�
codes, which provide the best performance to date in many
noise regimes. Although the most studied and applied case of
LDPC codes is of binary codes over GF�2� there is a signifi-
cant body of work, of both practical and theoretical nature
�3�, on codes over more general finite fields, showing an
improvement in performance with respect to the binary ver-
sion. In particular, statistical-physics-based analysis of
LDPC codes over GF�q� has been reported in �4�.

Low-density parity-check codes are based on random
sparse matrices, where the fraction of nonzero elements goes
to zero as the size of the matrix increases. In most studies of
LDPC codes, it is assumed that a parity-check matrix with M
rows �parity checks� and N columns defines a code of rate
R=1−M /N, exactly, which is equivalent to the assertion that
the number of vectors in the kernel �and therefore the num-
ber of codewords� is exactly qNR. In addition to being an
interesting applied problem, the properties of these matrices
are also of great interest from the purely mathematical point
of view and a number of papers has already tried to answer
related questions in different instances with a mathematically
rigorous approach �5–7�.

Random matrices are a well-studied topic in the physics
community, where they are important in a range of applica-
tions from classical physics to quantum chaos. Recently
there has been a lot of activity in the area, boosted by the
application of techniques originated in the statistical mechan-
ics of disordered systems �8–13�. These techniques have

been used to analyze ensemble properties and the replica
method has proved to be a valuable tool in several of these
approaches. Unlike this paper, however, most of these other
works concentrate on the spectral properties of the matrices.
Also, in most cases, the studied matrices are real, while the
restriction to GF�q� matrices considered here makes the so-
lution of the problem more involved.

In this contribution, we address two key properties of
sparse random matrices over GF�q�, namely, the average di-
mension of their kernels and the number of matrices for a
given connectivity profile, in the case of large matrices.
When the matrices are large, keeping N→� with M /N con-
stant, the problem can be mapped onto a system of interact-
ing “spins,” and the powerful machinery developed for the
study of disordered spin lattices in condensed matter physics
can then be used, under some assumptions, to obtain the
required properties.

In order to keep this paper as self-contained as possible
and make it accessible to a broad readership, we provide in
Sec. II a brief introduction to GF�q� matrices and their prop-
erties, and to the basic statistical physics methodology on
which we have based our analysis. In Sec. III, the usual
statistical physics approach to the analysis of LDPC codes
over the binary field GF�2� is generalized in such a way that
it can be efficiently applied to any GF�q� for a general con-
nectivity distribution of nonzero elements and then used to
calculate the average kernel dimension of sparse random ma-
trices �SRMs� in Sec. IV. Making use of techniques devel-
oped in Sec. IV, the number of matrices for a given distribu-
tion of nonzero elements is then obtained for various
connectivity profiles, in Sec. V. Finally, we present a discus-
sion of the obtained results in Sec. VI.

II. KEY CONCEPTS

A. GF(q) matrices

A Galois field GF�q� is a finite field with q elements, i.e.,
a set of q elements �0, . . . ,q−1�, which we symbolize by
integers for convenience, which is a commutative group un-
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der addition � :GF�q�→GF�q�, defined as integer addition
mod q, and with a monoid structure with respect to a com-
mutative multiplication operation � :GF�q�→GF�q�. The
field also includes the zero element 0, mapping every other
element to itself, and the identity 1; an additional require-
ment is that the multiplication and addition have the alge-
braic distributive property. This last requirement restricts the
number of elements to be q= pn, where p is a prime number
and n an integer.

Entries in matrices over GF�q� take values of numbers in
the field GF�q�, where the usual additions and multiplica-
tions involved in their algebra are defined by the correspond-
ing operations over the Galois field. The kernel, or null
space, of an M �N matrix A is defined as the set of vectors
v�GF�q�N such that Av=0, with all operations in the field
GF�q�. The kernel is a linear vector space and therefore will
have qd�A� vectors, where d�A� is the kernel dimension. The
rank r�A� of the matrix is obtained by the rank-nullity theo-
rem as r�A�=N−d�A�.

B. Disordered systems

An interacting spin problem has two main elements: an
interaction defined between a number of spin units, collec-
tively represented by the vector �= ��1 , . . . ,�N�, in a lattice
and a local field which acts in each variable �i separately.
Disordered spin systems are systems where one or both of
these elements �interaction and field� is a random variable.
Usually, we are interested in the properties of very large
systems, where the number N of spins becomes infinite, the
so-called thermodynamic limit.

The main properties of the system in the thermodynamic
limit can be derived from a key quantity, the free energy f ,
which in probabilistic terms corresponds to the cummulant
generating function. For disordered systems, in the cases
where the free energy is self-averaging with respect to the
disorder, we can calculate this quantity as

f = − lim
N→�

1

�N
�ln Z� , �1�

where �·� indicates the disorder average, Z=	�e−�H��� is the
partition function, and H��� is the Hamiltonian of the sys-
tem. Although the self-averaging property should be rigor-
ously investigated for each system, we will assume it holds
here.

In order to obtain the free energy, a powerful technique is
to make use of the replica method, based on the identity


 �

�n
ln�Zn��

n=0
= �ln Z� . �2�

Average quantities can then be calculated for integer n and
analytically continued to zero. The replica theory is com-
monly used in the area of disordered systems and is known
to provide exact results in many regimes, including both
physical and nonphysical systems �14,15�.

Many problems in computing and communication theory
can be mapped to spin systems. For instance, error-correcting
codes, in particular LDPC codes �16� and hard computational

problems, such as the satisfiability problem �17� and graph
coloring �18,19�, can be mapped to diluted spin systems with
random p-spin interactions and local fields. In the coding
example, interactions are defined by the parity-check con-
straints, while the local fields are induced by the codeword
and received message. In the statistical physics treatment, for
mathematical convenience, the message bits �0,1� and the �

operation are mapped onto spin values �+1,−1� and multi-
plication using the mapping x→ �−1�x. Variables over a gen-
eral finite field GF�q�, q�2, are typically first mapped onto
a binary string and then, using the spin value representation,
transformed into a spin system �4�.

III. MAPPING GF(q) MATRICES INTO SPIN SYSTEMS

The transformation

��v� = �− 1�v, �3�

where �� �+1,−1� and v� �0,1�, is usually employed to
map the GF�2� variables onto the binary representation. This
mapping can be generalized to any GF�q� without an inter-
mediate use of the binary field.

Under the operation � , GF�q� is homeomorphic to the
cyclic group of order q and therefore has a representation as
the complex qth roots of unity with the group homeomor-
phism � :GF�q�→C given by

��v� = exp
2�i

q
v� , �4�

such that for every v1 ,v2�GF�q�

��v1 � v2� = exp
2�i

q
�v1 � v2��

= exp
2�i

q
�v1 + v2��

= exp
2�i

q
v1�exp
2�i

q
v2�

= ��v1���v2� . �5�

This mapping has a clear geometric interpretation: 2�v /q is
an angle in the unit circle, such that each element of the
Galois field is being mapped onto a spin variable “pointing”
in one of q possible angles. Using this mapping allows one to
write the null-space constraint for a general vector v
= �v1 , . . . ,vN��GF�q�N as

��Av,0� = �
i=1

M

�� �
j=1

N

�Aij � v j�,0� , �6�

with
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�� �
j=1

N

�Aij � v j�,0�

=
1

��q� �
m=1

q−1 
1 − exp
−
2�i

q
m��

j=1

N

exp
2�i

q
�Aij � v j���

�7�

and

��q� = �
m=1

q−1 
1 − exp
−
2�i

q
m�� . �8�

Using the properties of the complex roots of unity, the above
quantity ��q� can be shown to be real and equal to the order
q of the field �see Appendix A�.

Based on this representation, we can now define the
“magnetization” of the original system in analogy with the
spin system as

m =
1

N
	
j=1

N

� j , �9�

and the overlap between two configurations � and �� as

	 =
1

N
	
j=1

N

� j��j , �10�

where we are now working with the spin variables already
mapped to the the complex field C, and therefore the opera-
tions of multiplication and addition correspond to the usual
ones in C. It turns out that this kind of representation allows
a factorization of the terms simplifying the equations and
making the replica calculations simpler, as we will see in the
following.

IV. AVERAGE PROPERTIES OF THE KERNEL

The dimension of the kernel of an M �N matrix A over
GF�q� can be written as d�A�=logq 
, where


 = 	
v

��Av,0� �11�

is the number of vectors in the kernel, � is the Kronecker
delta, and v�GF�q�N. Direct calculation of 
 from Eq. �11�
by straightforwardly substituting for the Kronecker delta its
integral representation trivially reproduces the rank-nullity
theorem. This calculation is not presented here.

The quantity we are interested in here is the average ker-
nel dimension; more specifically, its density in the limit of
large matrices, defined as Ts where

s �
1

T
lim
N→�

�d�A��A

N
= lim

N→�

1

N
�ln 
�A, �12�

where 1 /T=ln q and M /N��, with � a finite positive con-
stant. Using the replica identity �2�, we can write

s = lim
N→�


 �

�n
ln�
n�A�

n=0
. �13�

The randomly chosen sparse matrices A have exactly Ki non-
zero elements in the ith row with probability P�K�, K
��K1 , . . . ,KM�, and Cj elements in the jth column with
probability P�C�, C��C1 , . . . ,CN�, obeying the constraint
��	iKi=	 jCj, where � is the total number of nonzero el-
ements of the matrix. The elements of A are sampled from
the finite field GF�q� with independent equal probabilities
P�Aij�.

Let us define, for brevity of notation, Zn��
n�A. Al-
though the calculations, presented in Appendix B, are similar
to related calculations in �20,21�, we will use a different
approach, which is conceptually clearer and has the advan-
tage of allowing later generalizations. In this approach, we
sum directly over all entries of the matrix instead of defining
a connectivity tensor as used elsewhere �20,21�,

Zn =� 1

N 	
�Aij�


�
i,j

P�Aij��
�
i=1

M

�
	
j=1

N


�Aij�,Ki��
�
�

j=1

N

�
	
i=1

M


�Aij�,Cj���
a=1

n


	
va

��Ava,0���
K,C,�

,

�14�

where the average is over the probability distribution
P�K ,C ,�� with 
�Aij�=0 if Aij =0 and 1 otherwise, and the
normalization N gives the number of matrices that obey the
constraints averaged over the distributions of the entries. In
this way, any type of constraint on the matrix can be readily
included in the calculation, which could be rather cumber-
some in other approaches, based on the introduction of a
connectivity tensor as the corresponding constraints have to
be written in terms of the tensor elements, which can be
extremely complicated.

We refer the reader to Appendix B for details of the cal-
culations. Using the replica-symmetric ansatz, which is
shown to be exact for this problem �see Appendix D�, we
arrive at the following self-consistent saddle point equations:

�̂�x̂� =
1

�����	i=1

M ���

�!
Ki�
x̂ − �

l=1

Ki−1

xl��
x,K,C,�

, �15�

��x� =
1

�����	j=1

N ���

�!
Cj��x −

�
l=1

Cj−1

�1 + �q − 1�x̂l� − �
l=1

Cj−1

�1 − x̂l�

�
l=1

Cj−1

�1 + �q − 1�x̂l� + �q − 1� �
l=1

Cj−1

�1 − x̂l���
x̂,K,C,�

, �16�
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0 = ���

�!

1 −

�

�
��

K,C,�
, �17�

with

���� = ���

�!
�

K,C,�
, �18�

and at the corresponding expression for s:

s = − � ln q −
�

N
�ln�1 + �q − 1�xx̂��x,x̂

+
1

N����	i
���

�!�ln
1 + �q − 1��
l=1

Ki

xl��
x
�

K,C,�

+
1

N����	j
���

�!�ln
�
l=1

Cj

�1 + �q − 1�x̂l�

+ �q − 1��
l=1

Cj

�1 − x̂l���
x̂
�

K,C,�

. �19�

The probability distributions ��x� and �̂�x̂� in Eqs. �15� and
�16� are of the auxiliary effective field x and its conjugate x̂,
respectively. They represent a generating function for the or-
der parameters defined as site averages of a given number of
system replicas. They can also be interpreted as message
probability distributions within the microscopic message
passing framework, also known as belief propagation �22�; a
more detailed explanation is provided in �23,24�. Their exact
definition is given in Eqs. �B17� and �B18� of Appendix B.

It must be noted that the above equations are meaningful
only if ��N. A striking property of the above equations is
that they are completely independent of the specific distribu-
tion of the individual elements of the matrix, depending only
on the distribution of K and C �and, obviously, of ��.

There exist two straightforward analytical solutions of the
above equations, namely, the paramagnetic one given by

�̂�x̂� = ��x̂�, ��x� = ��x� , �20�

and the ferromagnetic solution

�̂�x̂� = ��x̂ − 1�, ��x� = ��x − 1� . �21�

When substituted in the above equations, the paramagnetic
solution gives the average kernel density as Ts=1−�=1
−M /N independently of the order q of the finite field used.
In the case of LDPC codes defined by such matrices, this
corresponds to random parity-check matrices that define a
code of rate R=1−�. The average rank density in this case is
�. The ferromagnetic solution gives Ts=0 and the matrix is
full rank; which incidentally means that such matrices cannot
be used to define a parity-check code due to the lack of
redundancy.

These quantities can be associated with analogous quan-
tities in the statistical mechanics framework. We start by as-
sociating the average rank density with the free energy f and
writing

f �
�r�A��A

N
= 1 − Ts , �22�

which allows one to associate s with the entropy and the
internal energy density is constrained to be u=1. Defining
�=1 /T, Eq. �22� becomes

�f = 1 −
1

N
�ln	

v
��Av,0��A =

1

N
�N ln e� − ln	

v
��Av,0��A

= −
1

N
�ln	

v
��Av,0�e−�N�A

= −
1

N
�ln	

v
e−�H�v��A, �23�

where the Hamiltonian of the corresponding statistical me-
chanical system is formally

H�v� � N − ln ��Av,0� . �24�

We solved the saddle point equations by means of population
dynamics for three different cases, in all of which we keep K
fixed: �1� Regular matrices—C and K fixed; �2� fixed K and
C drawn from a multinomial uniform probability

P�C� =
�MK�!

� j
Cj!

1

NMK ; �25�

�3� fixed K, while the C values are drawn from a Poisson
integer distribution of mean � /N=�K for each column sepa-
rately, until the limit of MK nonzero elements is reached.

Population dynamics �25� is an iterative method to obtain
the probability distributions of the auxiliary fields. First, a
large population of fields x and x̂ is generated and each in-
dividual is initialized to a random value in the interval
�−1, +1�. Then the whole population is sampled in a random
order and updated according to the relations defined by the
saddle point equations. This process is repeated a large num-
ber of times and averaged over all realizations. The number
of iterations in the algorithm is fixed due to the fact that
close to the critical points it exhibits a critical slowing down
and convergence of the population is extremely slow.

Results for the various cases are presented in Fig. 1. The
top left plot shows the theoretical thermodynamically domi-
nant solutions �paramagnetic in the range 0���1 and fer-
romagnetic for ��1� having the lower free energy.

The top right plot shows the results for the regular case
�1�. Solutions were obtained numerically by iterating Eqs.
�15� and �16� for the case of q=4 and K=200; C was varied
from 2 to 250. Repeating the calculations for different values
of q and K have produced similar results. We see that the
stable solution is always paramagnetic, but becomes un-
physical at �=1 once the entropy, and consequently the di-
mension of the kernel, becomes negative.

In the case of parity-check codes, this result means that
the typical parity-check matrix defines a code of rate exactly
�N−M� /N. This is assumed for any parity-check matrix in
most calculations in the literature and is confirmed by our
results to be true on average; however, it is important to
point out that the result is true in the limit of large matrices
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and is likely to have finite size corrections which may affect
practical applications.

Cases �2� and �3� are presented, respectively, at the bot-
tom left and right of Fig. 1. Although these cases do not
rigorously obey the constraint that each Cj must be at most
M, for large matrices and small values of K �which is what
happens in practice� Cj is unlikely to exceed this value.
However, instabilities can and indeed occur for specific �
values, presumably due to instances where Cj takes higher
values.

The bottom left plot shows results for the case �ii�, with
q=3, K=4, N=1000, and 1�M �1250. Also in this case,
the stable dominant solution is paramagnetic. Numerical in-
stabilities, which disappear slowly with the increase in the
number of fields and steps in the population dynamics,
emerge in the unphysical region and are shown in the figure.

The behavior for case �3� is a little more complex due to
the nature of the distribution chosen. Use of the average
value �K for the variables Cj implies that, as � varies, their
average value also changes. The plot shown was obtained for
q=2, K=4, N=250, and 1�M �300. There are clearly sev-
eral special points in this plot, which distinguish it from the
previous cases. The first point separates � values which give
rise to average connectivity values lower or higher than 1
�left and right, respectively�. Up to this point, the matrix has
too many zero columns, pushing the kernel size to cover the
full space of vectors; this transition is of a different nature
from the ones described previously. The other two points
where numerical instabilities emerge are related to the per-
colation transition. Further calculations with different K val-
ues indicate that these points appear around the extremes of
the interval 2 /K���3 /K. Inside this interval, the average
value of the Cj is equal to 2 �once we take it to be an inte-
ger�. This value marks the percolation transition for binary
matrices; the numerical instabilities in this case are associ-
ated with a critical slowing down of the algorithm close to
the transition point as the algorithm stops after a predeter-
mined number of iterations. Apart from these differences, the
resulting curve seems to coincide with those obtained for the
previous cases.

The solution of the kernel size problem is mathematically
equivalent to the solution of the LDPC in channels with in-

finite noise. As the solution in the latter is paramagnetic, we
are led to speculate that it is the dominant solution here also,
up to the point where the quantity s, analogous to the en-
tropy, becomes negative. From this point on the solution be-
comes ferromagnetic. The numerical results seem to support
this conjecture, although more careful calculations, varying
all the parameters involved, must be carried out to confirm
this hypothesis more generally.

V. NUMBER OF MATRICES

The number of GF�q� matrices given a connectivity pro-
file is of significant interest within the discrete mathematics
community. Exact results have been obtained for the case of
finite binary matrices �26� in the form of a formula that fa-
cilitates the calculation of their precise number. In this paper
we will analyze the case of large GF�q� matrices and provide
an expression for both their exact and average numbers.
Given the precise number of nonzero elements per row K
= �K1 , . . . ,KM� and per column C= �C1 , . . . ,CN�, one can
write the number of matrices as

NA = 	
�Aij�


�
i=1

M

�
	
j=1

N


�Aij�,Ki��
�
j=1

N

�
	
i=1

M


�Aij�,Cj�� .

�26�

Note that we are using the summation directly over the
entries of the matrix instead of the introduction of a connec-
tivity tensor. In this way, the calculations are similar to the
ones for obtaining the kernel dimension with the details
given in Appendix C. The final result is

NA = �q − 1��
�!

�
i

Ki!�
j

Cj!
. �27�

Note that the component on the right represents the number
of binary matrices with the given nonzero-element profile.
The factor �q−1�� is the multiplicity of the nonzero entries
that can have any nonzero value in the Galois field.

If we consider a distribution P�K ,C ,��, we can look at
the average number of matrices

0.0 0.5 1.0

λ

0.0

0.5

1.0

Kernel Dimension

Rank
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λ

0.0
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0.0 0.5 1.0

λ

0.0

0.5
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Kernel Dimension

Rank
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0.0

1.0

Kernel Dimension

Rank

FIG. 1. Average kernel dimen-
sion density �continuous lines�
and average rank density �dashed
lines� calculated as solutions to
the replica-symmetric saddle point
equations. The top left plot shows
the thermodynamically favored
solution �paramagnetic for 0��
�1 and ferromagnetic for ��1�.
The top right shows the regular
case �1� for fixed K and C. Cases
�2� and �3� are presented at the
bottom left and right, respectively.
Note that numerical instabilities
occur for specific � values.
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N̄A =��q − 1��
�!

�
i

Ki!�
j

Cj!�
K,C,�

. �28�

Note that we can write the joint probability distribution as

P�K,C,�� = P��K��,C�P����C�P�C� , �29�

and that P����C�=��� ,	 jCj�. Therefore, we have obtained
for the average number of matrices

N̄A = 	
K

	
C

P��K�C�P�C��q − 1�	jCj


	
j

Cj�!

�
i

Ki!�
j

Cj!
,

�30�

where the distribution P��K�C� includes the constraint
��	iKi ,	 jCj�.

A simple calculation shows that for the regular case,
where all Cj’s and Ki’s are fixed �to C and K, respectively�,
and q=2, the number of matrices scales as NCN. Therefore, a
more appropriate quantity to calculate instead of the average
number of matrices would be the quenched entropy

� �� 1

N
ln NA�

=
1

N
	
K

	
C

P��K�C�P�C�

�ln��q − 1�	jCj


	
j

Cj�!

�
i

Ki!�
j

Cj!� , �31�

which scales as ln N.
We analyze the behavior of this quantity for three differ-

ent cases. We choose each Cj to be independently and iden-
tically distributed �i.i.d.� and K to be chosen from a multino-
mial distribution

P�K� =

	

i

Ki�!

�
i

Ki!

1

N	iKi
�
	

i

Ki,	
j

Cj� , �32�

for each realization of C. The three probability distributions
for the variables Cj to be analyzed are �1� uniform in the

interval �0,2C̄�,

P�Cj� = 1/�2C̄ + 1�; �33�

�2� binomial in the interval �0,M�,

P�Cj� = 
M

Cj
�
 C̄

M
�Cj
1 −

C̄

M
�M−Cj

; �34�

�3� Zipf distribution for Cj =1, . . . ,M,

P�Cj� =
Cj

−s

	
n=1

K

n−s

, �35�

where C̄ is the mean of the distributions. The motivation for
choosing these connectivity profiles is that they appear to be
the most commonly analyzed and feature �especially the lat-
ter� in recent analysis and modeling of networks.

Results for the binomial �dashed line� and uniform �dotted

line� distributions with means C̄=5.0,10.0,20.0, q=2, and
N=300 are plotted in Fig. 2, together with the value of �

with constant Cj = C̄ and Kj = C̄ /� values for all i and j. This
function is explicitly given by

�� = C̄ ln�q − 1� − ln C̄ ! +
1

N
ln�NC� ! − � ln�C̄/�� ! ,

�36�

and we can obtain its asymptotic behavior for small and large
� as

� � 1 ⇒ �� = C̄ ln�q − 1� − ln C̄ ! + C̄ ln �N , �37�

0.0 0.5 1.0 1.5 2.0

λ

-40

-20

0

20

40

60

80

Ξ 5.0

10.0

20.0

Constant C and K
Binomial Distribution
Uniform Distribution

0 0.07
0

20

FIG. 2. Values of the quenched
entropy � versus � for the differ-
ent distributions and various C
values �C=5,10,20�, with multi-
nomial K: constant �continuous
line�, binomial �dashed line�, and
uniform �dotted line�. The inset
shows in detail the small-� re-
gime, where just the binomial and
constant distributions are repre-
sented. The higher lines on the
right correspond to the higher C
values.
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� � 1 ⇒ �� = C̄ ln�q − 1� − ln C̄ ! + C̄ ln C̄N + �� − 1�C̄ ,

�38�

where ��0.577 216 is the Euler-Mascheroni constant.
Asymptotic limits for large � are given in Table I.

For large � values the result for constant C and K upper-
bounds the other two distributions. Additional calculations
seem to indicate that it is always the case for any distribu-
tion, although a proof for this conjecture is still sought. This
implies that, if we keep the number of columns constant and
increase the ratio � by adding rows, whenever the number of
rows is much larger than the number of columns, the average
number of matrices becomes independent of both the ratio
and number of rows. The plots also suggest that the average
number of matrices in these cases is basically defined by the
average value of the C distributions.

For small values of �, the uniform distribution continues
to be upper-bounded by the constant distribution. The bino-
mial distribution, however, is higher for a small interval
around zero. This behavior is shown in the inset where lower
C values give rise to higher � as � becomes smaller.

Figure 3 shows the results for the Zipf distribution with
different values for the power s compared with a uniform
distribution in the range �0,M�. In this case, the means of the
distributions vary with �. We see that, although the average
value of the Zipf distributions increasingly differs from the
uniform value M /2 as s increases, the average number of
matrices actually becomes highly similar.

VI. CONCLUSIONS

We have introduced a mapping of Galois matrices to spin
systems based on the group homeomorphism between

GF�q�’s under addition mod q �denoted by �� and the com-
plex qth roots of unity. In addition, we have introduced a
different way for summing over random matrices that can be
generalized to include any kind of connectivity constraint
and is conceptually cleaner and simpler than the existing
approaches. This mapping and alternative summation over
random matrices allow for a factorization of the constraints,
which simplifies calculations of the kernel and the number of
matrices under various connectivity profiles.

Using the replica approach and these techniques, we cal-
culated the average dimension of the kernel for a general
distribution of nonzero entries and solved the resulting equa-
tions numerically, finding that the average kernel density is
1−M /N in all cases studied. We conjecture that this result is
always valid. Based on the analogy with thermodynamical
quantities corresponding to free energy, internal energy, and
the Hamiltonian, we showed that the replica-symmetric an-
satz in this case must be exact. With the same techniques, we
were also able to find the total number of large matrices for
fixed K and C and their average number, which was then
computed for different distributions of theoretical and prac-
tical relevance.

The results presented have practical relevance in a num-
ber of areas, including coding network modeling and some
biological models. With respect to LDPC codes, the average
kernel density result implies that randomly generated LDPC
codes typically define codes of rate exactly 1−M /N, an as-
sumption that is generally made but lacks rigorous deriva-
tions. Also, as the parity-parity check matrix can represent
the connectivities in graphs �see �27��, the results obtained
for the average number of matrices provide an approach in
principle to determine the average number of possible graphs
with a given connectivity distribution of a more general na-
ture than the connectivity profiles examined in this paper.
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APPENDIX A: PROOF OF �(q)=q

In this appendix we prove the statement made in Sec. IV
that ��q�=q where

��q� = �
m=1

q−1 
1 − exp
−
2�i

q
m�� . �A1�

From the above equation, we have

��q� = �
m=1

q−1

exp
−
�i

q
m�
exp
�i

q
m� − exp
−

�i

q
m��

= �2i�q−1 exp
−
�i

q
	
m=1

q−1

m��
m=1

q−1

sin
m
�

q
� . �A2�

The identity

exp
−
�i

q
	
m=1

q−1

m� = i1−q �A3�

implies the equation

��q� = 2q−1�
m=1

q−1

sin
m
�

q
� . �A4�

Using the known identity �28�

sin�qx� = 2q−1�
m=0

q−1

sin
x + m
�

q
� , �A5�

dividing by sin x, and taking x→0, one obtains

�
m=1

q−1

sin
m
�

q
� =

q

2q−1 , �A6�

which by substitution into Eq. �A4� gives the desired result.

APPENDIX B: REPLICA-SYMMETRIC SADDLE POINT
EQUATIONS

Using integral representations for the first two sets of
Kronecker � functions, we can write the averaged replicated
kernel size defined in Eq. �14� as

Zn =� 1

N	
�va�
� DW DZ 	

�Aij�

�

i,j
P�Aij��WiZj�
�Aij��

��
i=1

M

�
a

�
�
j=1

N

�Aij � va
j �,0��

K,C,�

, �B1�

where � and � indicate multiplication and summation on
GF�q�, respectively, and

DW DZ = 
�
i=1

M
dWi

Wi
Ki+1�
�

j=1

N
dZj

Zj
Cj+1� . �B2�

Using the representation of the parity-check constraint given
in Eq. �6�, the product over replica indices of the � function
can be written as

�
a

�
�
j=1

N

�Aij � va
j �,0�

= �
a

1

q �
m=1

q−1 
1 − exp
−
2�i

q
m��

j=1

N

exp
2�i

q
�Aij � va

j ���
=

1

qn�
a

1 + 	

s=1

q−1

Fi�s,a�G�s��
=

1

qn	
r=0

n

	
�a1¯ar�

	
s1,. . .,sr

G�s1� ¯ G�sr�Fi�s1,a1� ¯ Fi�sr,ar� ,

�B3�

with

G�s� � 	
�m1,. . .,ms�

�− 1�s exp
−
2�i

q
m1�¯ exp
−

2�i

q
ms�

�B4�

and

Fi�s,a� � exp
2�i

q
�Ai1 � va

1��¯ exp
2�i

q
�AiN � va

N��
= �

j=1

N

� j�s,a,Aij� , �B5�

where we defined, for simplicity,

� j�s,a,Aij� � exp
2�i

q
s�Aij � va

j �� . �B6�

We can now write the partition function as

Zn =� 1

N	
�va�
� DZ�

i=1

M
1

qn

�	
r=0

n

	
�a1¯ar�

	
s1,. . .,sr

G�s1� ¯ G�sr�� dWi

2�i

1

Wi
Ki+1�i�

K,C,�

,

�B7�

where

�i = 	
Ai1,. . .,AiN


�
j

P�Aij�

��WiZj�
�Aij���
j

� j�s1,a1,Aij� ¯ � j�sr,ar,Aij�

= �
j

	
Aij

P�Aij��WiZj�
�Aij�� j�s1,a1,Aij� ¯ � j�sr,ar,Aij�
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= pN�
j

1 +

1

p
	
h=1

q−1

P�Aij = h�

�WiZj� j�s1,a1,h� ¯ � j�sr,ar,h�� , �B8�

where we define, for convenience, p�P�Aij =0�. Let us de-

fine a probability distribution over the values of h as

P�h� =
P�Aij = h�

1 − p
, �B9�

in such a way that h varies from 1 to q−1 and the probability
over this range is correctly normalized. Then

�i = pN�
j

1 + 
1 − p

p
�WiZj�� j�s1,a1,h� ¯ � j�sr,ar,h��h�

= pN	
l=0

N

	
�j1¯jl�


1 − p

p
�l

Wi
lZj1

¯ Zjl
�� j1

�s1,a1,h� ¯ � j1
�sr,ar,h��h ¯ �� jl

�s1,a1,h� ¯ � jl
�sr,ar,h��h. �B10�

The integrals over the the Wi’s, acting on the �i’s, select the power of Wi to be Ki, and we therefore obtain

Zn =��	
�va�
� DZ�

i=1

M 
	
r=0

n

	
�a1¯ar�

	
s1,. . .,sr

G�s1� ¯ G�sr�

� 	
�j1¯jKi

�
Zj1

¯ ZjKi
�� j1

�s1,a1,h� ¯ � j1
�sr,ar,h��h ¯ �� jKi

�s1,a1,h� ¯ � jKi
�sr,ar,h��h��

K,C,�

���	
�va�
� DZ�

i=1

M 
	
r=0

n

	
�a1,. . .,ar�

	
s1,. . .,sr

G�s1� ¯ G�sr�
NKi

Ki!

 1

N
	
j=1

N

Zj�� j�s1,a1,h� ¯ � j�sr,ar,h��h�Ki��
K,C,�

, �B11�

where

� = pNM
1 − p

p
�	iKi

N−1q−nM . �B12�

The calculation of N is similar to the calculation of the number of matrices shown in Appendix C, and we end up with

� =
1

qnMNA
�2� , �B13�

where NA
�2� is exactly the number of binary matrices �q=2� as calculated in Appendix C. Introducing the replica overlaps

Q�a1¯ar�
s1,. . .,sr �

1

N
	
j=1

N

Zj�� j�s1,a1,h� ¯ � j�sr,ar,h��h �B14�

and the corresponding auxiliary variables Q̂�a1¯ar�
s1,. . .,sr by means of Dirac � functions, we can express the partition function as

Zn =� DQ DQ̂ exp�− N 	 Q�a1¯ar�
s1,. . .,sr Q̂�a1¯ar�

s1,. . .,sr ���
N	iKi

�
i

Ki!
�

i
�	 G�s1� ¯ G�sr�

��Q�a1¯ar�
s1,. . .,sr �Ki��

j

	

�va
j �
� DZj exp�Zj 	 Q̂�a1¯ar�

s1,. . .,sr �� j�s1,a1,h� ¯ � j�sr,ar,h��h���
K,C,�

=� DQ DQ̂ exp�− N 	 Q�a1¯ar�
s1,. . .,sr Q̂�a1¯ar�

s1,. . .,sr ��q−nM N	iKi


	
i

Ki�!
�

i
�	 G�s1� ¯ G�sr�

��Q�a1¯ar�
s1,. . .,sr �Ki��

j 
	
�va

j �
�	 Q̂�a1¯ar�

s1,. . .,sr �� j�s1,a1,h� ¯ � j�sr,ar,h��h�Cj��
K,C,�

, �B15�
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where

DQ DQ̂ � 
� dQ dQ̂

2�i/N
� , �B16�

and the summations run over all the allowed values of r,
�a1¯ar�, and s1 , . . .sr.

Under the assumption of replica symmetry in the form

Q�a1¯ar�
s1,. . .,sr = Q0�xr�x, �B17�

Q̂�a1¯ar�
s1,. . .,sr = Q̂0�x̂r�x̂, �B18�

where the averages over x and x̂ are taken with respect to the
field distributions ��x� and �̂�x̂�, respectively, we can show
by straightforward algebraic manipulations that

	 Q�a1¯ar�
s1,. . .,sr Q̂�a1¯ar�

s1,. . .,sr = Q0Q̂0��1 + �q − 1�xx̂�n�x,x̂,

�B19�

	 G�s1� ¯ G�sr��Q�a1¯ar�
s1,. . .,sr �Ki

= Q0
Ki�
1 + 
	

s

G�s���
l=1

Ki

xl�n�
x

, �B20�

where it is easy to see that

	
s

G�s� = ��q� − 1 = q − 1, �B21�

and

	
�va

j �
�	 Q̂�a1¯ar�

s1,. . .,sr �� j�s1,a1,h� ¯ � j�sr,ar,h��h�Cj

= Q̂0
Cj�
	

v=0

q−1

�
l=1

Cj

�1 + ��v,hl�x̂l��n�
x̂,h

, �B22�

with

��v,hl� � 	
s=1

q−1

exp
i
2�s

q
�hl � v�� = �q − 1 if hl � v = 0,

− 1 otherwise.
�

�B23�

We can simplify the last equation by noting that

	
v=0

q−1

�
l=1

Cj

�1 + ��v,hl�x̂l� = �
l=1

Cj

�1 + �q − 1�x̂l� + �q − 1�

��
l=1

Cj

�1 − x̂l� . �B24�

Let us write

Zn =� DQ DQ̂ eNs̃ �B25�

with

s̃ = −
1

N
ln NA

�2� − n� ln q − Q0Q̂0��1 + �q − 1�xx̂�n�x,x̂ +
1

N
ln � ,

�B26�

where

� =�N�

�!
Q0

�Q̂0
��

i
�
1 + �q − 1��

l=1

Ki

xl�n�
x

��
j
�
�

l=1

Cj

�1 + �q − 1�x̂l� + �q − 1�

��
l=1

Cj

�1 − x̂l��n�
x̂
�

K,C,�

. �B27�

Let us define ��NQ0Q̂0. For n�1, we can consider only
the leading contributions in the number of replicas, which
gives

ln � = ln ���� +
n

����

�	
i
���

�!�ln
1 + �q − 1��
l=1

Ki

xl��
x
�

K,C,�

�
n

����	j
���

�!�ln
�
l=1

Cj

�1

+ �q − 1�x̂l� + �q − 1��
l=1

Cj

�1 − x̂l���
x̂

‹K,C,�,

�B28�

with

���� = ���

�!
�

K,C,�
. �B29�

Substituting the above formulas in s̃ for n→0, the extrem-

ization with respect to Q0, Q̂0, ��x�, and �̂�x̂� leads to the
saddle point equations �15�–�17�.

APPENDIX C: NUMBER OF MATRICES

Here we give the detailed calculation of the average num-
ber of GF�q� M �N matrices for large M and N. Repeating
the formula given in Sec. V, we have

NA = 	
�Aij�


�
i=1

M

�
	
j=1

N


�Aij�,Ki��
�
j=1

N

�
	
i=1

M


�Aij�,Cj��
�C1�

with 
�Aij�=0 if Aij =0, and 1 otherwise. Following a similar
procedure as in Appendix B, we use the integral representa-
tions of the Kronecker � functions to write it as
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NA =� DW DZ�
i,j

	
Aij

�WiZj�
�Aij�

=� DW DZ�
i,j

�1 + �q − 1�WiZj�

=� DW DZ�
i

1 + 	

r=1

N

�q − 1�rWi
r 	
�j1¯jr�

Zj1
¯ Zjr�

=� DW DZ
1 + 	
s=1

M

	
�i1¯is�

	
r1,. . .,rs

�q − 1�r1+¯+rs

�Wi1

r1
¯ Wis

rsF�r1,Z� ¯ F�rs,Z�� , �C2�

where

F�r,Z� � 	
�j1¯jr�

Zj1
¯ Zjr

. �C3�

The integrals over the W’s can pass through the summations
and will factorize to give the corresponding Kronecker �
functions, resulting in

NA = �q − 1�	iKi� DZ F�K1,Z� ¯ F�KM,Z�

= �q − 1��� DZ F�K1,Z� ¯ F�KM,Z�

= �q − 1��� DZ�
i

	
�j1¯jKi

�
Zj1

¯ ZjKi

� �q − 1��� DZ�
i

1

Ki!

	

j=1

N

Zj�Ki

= �q − 1��� DZ
1

�
i

Ki!

	

j=1

N

Zj�	iKi

=
�q − 1��

�
i

Ki!
� DZ 	

j1,. . .,j�

Zj1
¯ Zj�

=
�q − 1��

�
i

Ki!

�

C1
�

�
� − C1

C2
�¯ 
� − C1 − ¯ − CN−1

CN
� , �C4�

which gives the final result

NA =
�q − 1���!

�
i

Ki!�
j

Cj!
. �C5�

APPENDIX D: PROOF OF REPLICA SYMMETRY

Using the fact that the random matrices can be seen as
statistical physics systems with Hamiltonian H�v��N
−ln ��Av ,0�, we now prove that this implies that the replica-
symmetric solution is the exact one. In fact, the form of the
Hamiltonian implies that

P�v� = 
	
v

��Av,0��−1
= q−d�A�. �D1�

The distribution of the overlaps of the spins is given by

P�	� =��
	 −
1

N
	
j=1

N

� j��j��
�,��

= q−2d�A�	
v,v�

��Av,0���Av�,0��

�
	 −
1

N
	
j=1

N

exp
2�i

q
�v j + v�j��� . �D2�

Let us call

g�v,v�� � �
	 −
1

N
	
j=1

N

exp
2�i

q
�v j + v�j��� , �D3�

and note that g�v ,v��=g�0,v � v��. Therefore we can write

P�	� = q−2d�A�	
v,v�

��Av,0���Av�,0�g�0,v � v��

= q−2d�A�	
v,v�

��Av,0���Av�,0�	
u

��u,v � v��g�0,u�

= q−2d�A�	
u

g�0,u�
	
v

��Av,0�

�	
v�

��Av�,0���u,v � v���
= q−2d�A�	

u
g�0,u��	

v
��Av,0���A„u � �− v�…,0��

= q−d�A�	
u

��Au,0�g�0,u�

=��
	 −
1

N
	
j=1

N

� j��
�

. �D4�

Therefore, the distribution of the overlaps is the same as the
distribution of the magnetization in the spin systems. This
implies that there is no spin glass phase in the system and,
therefore, no replica symmetry breaking �15�. The above cal-
culation can also be viewed as a consequence of the gauge
invariance of the Hamiltonian with respect to the transfor-
mation v→v � v�, where Av�=0, which leads basically to
the same calculation above.
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